The Global Attractivity of a Higher Order
Rational Difference Equation

Kenneth S. Berenhaut \(^{a,1,*}\),

\(^a\)Wake Forest University, Department of Mathematics, Winston-Salem, NC 27109

Stevo Stević \(^b\)

\(^b\)Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I
11000 Beograd, Serbia

Abstract

This paper studies global asymptotic stability for positive solutions to the equation

\[
y_n = \frac{y_{n-k}y_{n-l}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m}}{1 + y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m}}, \quad n = 0, 1, \ldots,
\]

with \(y_{-m}, y_{-m+1}, \ldots, y_{-1} \in (0, \infty)\) and \(1 \leq k < l < m\). The paper also includes a listing of possible semi-cycle structures for various \((k, l, m)\). The results generalize several others in the recent literature.

Key words: Rational Difference equation, Stability, Symmetry

2000 MSC: 39A10, 39A11

1 Introduction

This paper studies the behavior of positive solutions of the recursive equation

\[y_n = \frac{y_{n-k}y_{n-l}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m}}{1 + y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m}}, \quad n = 0, 1, \ldots,
\]

with \(y_{-m}, y_{-m+1}, \ldots, y_{-1} \in (0, \infty)\) and \(1 \leq k < l < m\). The paper also includes a listing of possible semi-cycle structures for various \((k, l, m)\). The results generalize several others in the recent literature.

Key words: Rational Difference equation, Stability, Symmetry

2000 MSC: 39A10, 39A11

1 Introduction

This paper studies the behavior of positive solutions of the recursive equation
\[y_n = \frac{y_{n-k}y_{n-1}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m}}{1 + y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m}}, \quad n = 0, 1, \ldots, \]

(1)

with \(y_m, y_{m+1}, \ldots, y_{-1} \in (0, \infty) \) and \(1 \leq k < l < m \).

The study of properties of rational difference equations has been an area of intense interest in recent years c.f. [1], [2] and the references therein.

Here we prove the following result for higher order rational equations.

Theorem 1 Suppose that that \(\{y_i\} \) satisfies (1) with \(y_m, y_{m+1}, \ldots, y_{-1} \in (0, \infty) \). Then, the sequence \(\{y_i\} \) converges to the unique equilibrium 1.

Investigation of Equation (1) is motivated by several recent results. In particular in [4] and [5], Li investigates the qualitative behavior of the equations

\[x_n = \frac{x_{n-1}x_{n-2}x_{n-4} + x_{n-1} + x_{n-2} + x_{n-4}}{x_{n-1}x_{n-2} + x_{n-1}x_{n-4} + x_{n-2}x_{n-4} + 1}, \quad n \in \mathbb{N}_0 \]

(2)

and

\[x_n = \frac{x_{n-2}x_{n-3}x_{n-4} + x_{n-2} + x_{n-3} + x_{n-4}}{x_{n-2}x_{n-3} + x_{n-2}x_{n-4} + x_{n-3}x_{n-4} + 1}, \quad n \in \mathbb{N}_0 \]

(3)

and verifies that the positive equilibrium point of each equation is globally asymptotically stable.

We remark that stability for equations of the form

\[y_n = \frac{1 + y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m}}{y_{n-k}y_{n-l}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m}}, \quad n = 0, 1, \ldots, \]

can also be shown via almost identical calculations to those included here.

Remark. It is worthwhile to note at this point that global asymptotic stability for the special cases in Equations (2) and (3) is proved in [4,5] via analysis of semi-cycle structure (similar methods are also used in [3]). Such analysis while computationally feasible for small \(m, l \) and \(k \) (see Section 4, below), can be very involved for larger values. In fact determination of semi-cycle structure as a function of \((m, l, k)\), appears to be an interesting algebraic/number theoretic problem in its own right. It is fortunate that the transformation method used here does not require prior determination of detailed semi-cycle structure.
The paper proceeds as follows. In Section 2, we introduce some preliminary lemmas and notation. Section 3 contains a proof of Theorem 1, while in Section 4, we discuss semi-cycle structure for a selection of small \(k, l \) and \(m \).

2 Preliminaries and Notation

In this section, we introduce some preliminary lemmas and notation.

First, consider the simple transformed sequence \(\{y_i^*\} \) defined by

\[
y_i^* = \begin{cases}
y_i, & \text{if } y_i \geq 1 \\
\frac{1}{y_i}, & \text{otherwise}
\end{cases}
\]

(4)

The following elementary lemmas will be useful.

Lemma 1 Suppose \(f \) is defined by

\[
f(x, y, z) = \frac{xyz + x + y + z}{1 + xy + xz + yz}.
\]

(5)

Then, \(f \) is decreasing in \(x \) if and only if \((y - 1)(z - 1) < 0\) and increasing in \(x \) if and only if \((y - 1)(z - 1) > 0\).

Proof. This follows directly from the fact that

\[
\frac{\partial}{\partial x} f(x, y, z) = \frac{(y^2 - 1)(z^2 - 1)}{(1 + xy + xz + yz)^2}.
\]

(6)

\[\square\]

Lemma 2 Suppose that \(\{y_i\} \) satisfies (1), and that \(\{y_i^*\} \) is obtained from \(\{y_i\} \) via (4). Then, we have

\[
y_n^* = (f(y_{n-k}, y_{n-l}, y_{n-m}))^* = f(y_{n-k}^*, y_{n-l}^*, y_{n-m}^*), \quad n = 0, 1, \ldots
\]

(7)

Proof. Suppose that \(\{y_i\} \) satisfies (1), and for a given \(n \), set \(\mathcal{N}_n = \{ i \in \{k, l, m\} : y_{n-i} < 1 \} \). Multiplying the numerator and denominator in (1) by \(\prod_{i \in \mathcal{N}_n} y_{n-i}^* \), noting
that \(y_{n-i}y_{n-i}^* = 1 \) for \(i \in \mathcal{N} \), and simplifying in each of the eight possible cases of \(\mathcal{N} \) gives

\[
y_n = \begin{cases}
f(y_{n-k}^*, y_{n-l}^*, y_{n-m}^*), & \text{if } ||\mathcal{N}_n|| \text{ is even} \\
1/f(y_{n-k}^*, y_{n-l}^*, y_{n-m}^*), & \text{if } ||\mathcal{N}_n|| \text{ is odd}
\end{cases}
\]

(8)

where for a set \(\mathcal{S} \), by \(||\mathcal{S}|| \), we denote the cardinality of \(\mathcal{S} \).

Now, note that

\[
y_{n-k}y_{n-l}y_{n-m} + y_{n-k}^* + y_{n-l}^* + y_{n-m}^* - (1 + y_{n-k}y_{n-l} + y_{n-m} + y_{n-k}y_{n-l} + y_{n-m}^*)
\]

\[
= (y_{n-k}^* - 1)(y_{n-l}^* - 1)(y_{n-m}^* - 1),
\]

(9)

and hence from (1) \(y_n > 1 \) if and only if \(||\mathcal{N}_n|| \) is even. The lemma then follows directly from (8) and (4).

Next we prove a contraction lemma (similar to Lemma 1 in [6]) which will be helpful in showing convergence of solutions in the transformed space obtained through (4).

Lemma 3 We have

\[
1 \leq y_n^* \leq \max\{y_{n-k}^*, y_{n-l}^*, y_{n-m}^*\},
\]

(10)

for all \(n \geq m \).

Proof. By Lemma 2, we have that

\[
y_n^* = \frac{y_{n-k}^*y_{n-l}^*y_{n-m}^* + y_{n-k}^* + y_{n-l}^* + y_{n-m}^*}{1 + y_{n-k}y_{n-l} + y_{n-m} + y_{n-k}y_{n-l} + y_{n-m}^*}, \quad n = 0, 1, \ldots,
\]

(11)

where \(y_i^* \geq 1 \) for all \(i \).

Setting \(x = \max\{y_{n-k}^*, y_{n-l}^*, y_{n-m}^*\} \), and applying Lemma 1 three times, we obtain

\[
y_n^* \leq \frac{x^3 + 3x}{3x^2 + 1},
\]

(12)

and the lemma follows. \(\Box \)

Now, set
for $n \geq m$.

The following result is a simple consequence of Lemma 3 and (13).

Lemma 4 The sequence $\{D_i\}$ is monotonically non-increasing in i, for $i \geq m$.

Since $D_i \geq 1$ for $i \geq m$, Lemma 4 implies that, as i tends to infinity, the sequence $\{D_i\}$ converges to some limit, say D, where $D \geq 1$.

We now turn to a proof of Theorem 1.

3 Convergence of solutions to Equation (1)

In this section, we give a short proof of Theorem 1.

Proof of Theorem 1. Note that it suffices to show that the transformed sequence $\{y_i^*\}$ converges to 1.

By the definition in (13), the values of D_i are taken on by entries in the sequence $\{y_j^*\}$, and as well, by Lemma 3, $y_j^* \in [1, D_i]$ for $i \geq m$. Suppose $D > 1$. Then, for any $\epsilon \in (0, D)$, we can find an N such that $y_N^* \in [D, D + \epsilon]$, and for $i \geq N - m$,

\[
y_i^* \in [1, D + \epsilon].
\]

We will show that $D = 1$, and from this, (4), (13) and the definition of D, the result follows.

Since $y_i^* \geq 1$ for all i, employing Lemmas 1 and 2, gives

\[
D \leq y_n^* \leq \frac{(D + \epsilon)^3 + 3(D + \epsilon)}{3(D + \epsilon)^2 + 1} \leq x.
\]

Hence

\[
3D(D + \epsilon)^2 + D \leq (D + \epsilon)^3 + 3(D + \epsilon)
\]

\[
2D^3 \leq 2D + (3\epsilon + \epsilon^3 - 3D^2\epsilon),
\]

5
which implies \(D = 1 \), since \(\epsilon > 0 \) is arbitrary. □

In the next section, we consider briefly semi-cycle structure for a selection of small \(k \), \(l \) and \(m \).

4 Semi-cycle structure for small \(k \), \(l \) and \(m \)

In [4,5], the semi-cycle rules for the equations in (2) and (3) are given. In particular for \(k = 2, l = 3, m = 4 \) (disregarding the nonoscillatory cases) the rule is either \(3^+, 1^-, 1^+, 2^+ \) or \(3^-, 1^+, 1^-, 2^+ \) in a period, while for \(k = 1, l = 2, m = 4 \), we have either \(3^+, 2^-, 1^+, 1^- \) or \(2^+, 1^-, 1^+, 3^- \).

Table 1 below gives the semi-cycle rules for several other \((k,l,m) \). The results are obtained computationally simply by considering \(\{(y_{n-m}, y_{n-m+1}, \ldots, y_n)\} \) relative to \((1,1,\ldots,1)\) and splitting the \(2^m \) possible \(m \)-strings into distinct cycle classes.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(l)</th>
<th>(m)</th>
<th>Possible semi-cycle structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>((2^-, 2^+), (1^-, 1^+))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>((3^-, 2^+, 1^-, 1^+), (3^+, 2^-, 1^+, 1^-))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>((3^-, 2^+, 1^-, 4^-, 2^-, 1^+), (3^-, 1^+, 1^-, 2^+), (3^+, 1^-, 1^+, 2^-), (1^-, 1^+))</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>((3^-, 3^+), (2^-, 1^+), (2^+, 1^-), (1^-, 1^+))</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>((4^-, 3^+, 1^-, 2^+, 2^-, 1^+, 1^-), (4^-, 3^-, 1^+, 2^-, 2^+, 1^-, 1^+, 1^-))</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>((4^-, 4^+), (3^-, 1^+), (3^+, 1^-), (2^-, 2^+), (1^-, 1^+), (2^-, 1^+, 1^-, 2^+, 1^-, 1^+))</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>((3^-, 1^+, 1^-, 2^+), (3^+, 1^-, 1^+, 2^-))</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>((4^-, 1^+, 1^-, 4^+, 1^-, 1^+), (3^-, 3^+), (2^-, 2^+), (2^-, 1^+), (2^-, 1^-), (1^-, 1^+))</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>((4^-, 1^+, 1^-, 1^+, 2^-, 2^+, 1^-, 3^+), (4^+, 1^-, 1^+, 1^-, 2^+, 2^-, 1^+, 3^-))</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>((4^-, 1^+, 2^-, 4^+, 1^-, 2^+), (3^-, 2^+, 1^-, 1^+), (3^+, 2^-, 1^+, 1^-), (1^-, 1^+))</td>
</tr>
</tbody>
</table>
References

