An optimal bound for inverses of triangular matrices with monotone entries

Kenneth S. Berenhaut*, Richard T. Guy and Nathaniel G. Vish

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA

Communicated by V. Mehrmann

(Received 9 June 2008; final version received 13 August 2009)

This article provides a new bound for 1-norms of inverses of positive triangular matrices with monotonic column entries. The main theorem refines a recent inequality established in Vecchio and Mallik [Bounds on the inverses of non-negative lower triangular Toeplitz matrices with monotonicity properties, Linear Multilinear Alg., 55 (2007), pp. 365–379]. The results are shown to be in a sense best possible under the given constraints.

Keywords: inverse matrix; monotone entries; triangular matrix; recurrence relations; optimal bound

AMS Subject Classifications: 15A09; 39A10; 15A57; 15A60

1. Introduction

This note provides a new bound for 1-norms of positive triangular matrices with monotonic column entries. The main theorem refines a recent inequality of Vecchio and Mallik [11]. We refer the reader to Vecchio [10] and Vecchio and Mallik [11] (and the references therein) for discussion of applications, particularly those to stability analysis of linear methods for solving Volterra integral equations (VIE). Other references of the topic include [4–7,9]. An application to VIE under Direct Quadrature is given in Example 1, below.

The matrices of interest here are $n \times n$ truncations of infinite lower triangular (real) matrices i.e.

$$A_{n} = \begin{bmatrix}
a_{1,1} & a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
a_{n,1} & \cdots & a_{n,n-1} & a_{n,n}
\end{bmatrix}. \quad (1)$$

The following result was proven in [11].

*Corresponding author. Email: berenhks@wfu.edu
THEOREM 1.1 Assume that

(i) \(a_{i,j} \geq a > 0, \ j = 1, \ldots, n, \ i = j, \ldots, n, \)
(ii) \(a_{j,j} \geq a_{j+1,j} \geq \cdots \geq a_{n,j}, \ j = 1, \ldots, n, \)

and let

\[
a_{\min} = \min_{i=1, \ldots, n} \{a_{i,i}\},
\]

and \(B_n = [b_{i,j}] \) be the inverse of the lower triangular matrix \(A_n. \) Then

\[
\|B_n\|_1 \leq \frac{1}{a_{\min}} + \frac{2}{a}.
\]

(3)

The result in (3) was first proven in the case of triangular Toeplitz matrices in [10] and improved, in this case, to the following in [3].

THEOREM 1.2 Suppose that the sequence \(\{a_i\}_{i \geq 0} \) satisfies

\[
a_0 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq a > 0,
\]

(4)

for some constant \(a \) and all \(n \) and

\[
C_n = \begin{bmatrix}
a_0 \\
a_1 & a_0 \\
a_2 & a_1 & a_0 \\
\vdots & \ddots & \ddots \\
a_n & \cdots & a_1 & a_0
\end{bmatrix}.
\]

(5)

Then

\[
\|C_n^{-1}\|_1 \leq \frac{2}{a} \left(1 - \rho(a, a_0)\left[\frac{a}{2}\right]\right)
\]

(6)

where \(\rho \) is the inverse ratio defined via

\[
\rho(x,y) = 1 - x/y,
\]

(7)

and, in particular

\[
\|C_n^{-1}\|_1 \leq \frac{2}{a},
\]

(8)

independent of \(a_0 \) and \(n. \)

The following result was recently proven in [2]. The theorem extends Theorem 1.2 to non-Toeplitz matrices and refines Theorem 1.1 in the case of constant diagonal.

THEOREM 1.3 Assume that the hypotheses of Theorem 1.1 are satisfied and in addition that

\[
a_{1,1} \leq a_{2,2} \leq \cdots \leq a_{n,n}.
\]

(9)

Then

\[
\|B_n\|_1 \leq \frac{2}{a} \left(\frac{a_{n,n}}{a_{1,1}}\right) \left(1 - \frac{\rho(a, a_{n,n})\left[\frac{a}{2}\right]}{2} + \frac{\rho(a, a_{n,n})\left[\frac{a}{2}\right]}{2}\right).
\]

(10)
In particular, if
\[a_{1,1} = a_{2,2} = \cdots = a_{n,n} = a^*, \]
then
\[\| B_n \|_1 \leq \frac{2}{a} \left(1 - \frac{\rho(a, a^*) [\xi]}{2} + \frac{\rho(a, a^*) [\xi]}{2} \right) \]
and hence
\[\| B_n \|_1 < \frac{2}{a}, \]
independent of \(a^* \).

Note that triangular matrices satisfying (11) arise in the study of linear groups (see e.g. [8]) and are particularly important in the theory of matrix decompositions.

Motivated by the above results, here we will improve on Theorem 1.1 by showing that the term \(1/a_{\min} \) in (3) is not needed and in addition that the new bound is in a sense best possible. In particular we will prove the following.

Theorem 1.4 Assume that the hypotheses of Theorem 1.1 are satisfied. Then
\[\| B_n \|_1 \leq \frac{2}{a}. \]

In fact, setting
\[A_n(a) = \{ A = [a_{ij}]_{n \times n} \mid A \text{ satisfies } (1), \ (i) \text{ and } (ii) \}, \]
we have
\[\sup_{A \in \bigcup_{n=1}^\infty A_n(a)} \| A^{-1} \|_1 = 2/a. \]

The reader is referred to [1] for some discussion of bounds for inverses of matrices of the form in (1) when the condition of monotonicity within columns is replaced with that within rows.

Example 1 A nice application of a priori bounds as in (3) and (14) to numerical solution of Volterra integral equations is given in Section 3.2 of [11]. In particular, consider a VIE of the second type given by
\[y(t) = g(t) + \int_0^t k(t, s)y(s)ds, \quad t \in [0, T], \]
where \(y, g \) and \(k \) are real valued functions with \(y(t) \) and \(g(t) \) continuous in \(0 \leq t \leq T \) and \(k(t, s) \) continuous for \(0 \leq s \leq t \leq T \). The application of a Direct Quadrature (DQ) method leads to the discrete equation
\[y_i = \tilde{g}_i + h \sum_{l=n_0}^i w_{i,l} k_{i,l} y_l, \quad i \geq n_0, \quad y_0, \ldots, y_{n_0-1} \text{ given}, \]
where
\[t_i = ih, \quad h = T/N, \quad k_{i,l} = k(t_i, t_t), \quad y_i \approx y(t_i), \quad \tilde{g}_i = g(t_i) + h \sum_{l=0}^{n_0-1} w_{i,l} k_{i,l} y_l, \]
Table 1. Values of c_1 and c_2 for some DQ methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward Euler (order 1, $n_0 = 1$)</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>Trapezoidal (order 2, $n_0 = 1$)</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>Simpson + Trapezoidal (order 3, $n_0 = 2$)</td>
<td>6/5</td>
<td>1/3</td>
</tr>
<tr>
<td>(ρ,σ) reducible (order 3, $n_0 = 2$)</td>
<td>3/2</td>
<td>5/12</td>
</tr>
</tbody>
</table>

and $[w_{i,j}]$ is the matrix of coefficients for the given quadrature method. The numerical solution (18) can be written in the form

$$y_n = A_n^{-1} g_n$$

where

$$y_n = [y_{n_0}, y_{n_0+1}, \ldots, y_{n-1+n_0}]^T \in \mathbb{R}^n, \quad g_n = [g_{n_0}, g_{n_0+1}, \ldots, g_{n-1+n_0}]^T \in \mathbb{R}^n,$$

and the lower triangular matrix A_n has diagonal entries $a_{i,i} = 1 - hw_{i,i}k_{i,i}$ and off-diagonal entries $a_{i,j} = -hw_{i,j}k_{i,j}$ for $j < i$.

Now, set $c_1 = \max_{1 \leq i \leq n} |w_{j+1,i} - w_{j,i}|$ and $c_2 = \min_{1 \leq i \leq n} w_{i,i}$. Values for c_1 and c_2 for some common DQ methods are provided in Table 1. Specific values of $w_{i,j}$ can be found in [11].

The following theorem is proven in [11].

Theorem 1.5 ([11]) Assume that

(i) $k(t,s) \leq 0, \quad t \geq 0, \quad 0 \leq s \leq t$,
(ii) $\partial k(t,s)/\partial s \geq 0, \quad t \geq 0, \quad 0 \leq s \leq t$,
(iii) $0 < K_m \leq -k(t,s) \leq K_M$,
(iv) $h \leq c_1/K_M$,
(v) $g(t) \leq g$.

Then the solution of the DQ methods under consideration satisfy

$$\|y_n\|_1 \leq \frac{\hat{g}}{1 + hc_2K_m} + \frac{2\hat{g}}{hc_2K_m}$$

with

$$\hat{g} = g + h(1 + 1/c_1)K_M \sum_{l=0}^{n-1} |y_l|.$$ \hspace{1cm} (21)

Note that there was a small typographical error in the equation corresponding to (20) in the statement of Theorem 3.1 in [11]. If Theorem 1.4 is used in place of Theorem 1.1, the sharper bound

$$\|y_n\|_1 \leq \frac{2\hat{g}}{hc_2K_m}$$

follows directly. For details regarding the proof of Theorem 1.5 and some added discussion see [11].

We now turn to a proof of Theorem 1.4.
2. Preliminaries and notation

In order to prove Theorem 1.4 we will need several results mentioned in [11]; for completeness we will prove the necessary preliminaries here.

First, define the sequence \(\{U_{i,j}\} \) via \(U_{i,j} = 0 \) if \(j > i \), \(U_{j,j} = 1/a_{j,j} \) and for \(i > j \),

\[
U_{i,j} = \frac{1}{a_{i,i}} - \sum_{l=j}^{i-1} \frac{a_{i,l}}{a_{i,i}} U_{l,j}. \tag{23}
\]

Note that for \(i \geq j \), \(U_{i,j} = u_{i,i} \), where \([u_{i,j}] \) is the fundamental matrix as defined in Equation (2.10) in [11].

We have the following lemma (see also Theorem 2.1 in [11]).

Lemma 2.1 Under the assumptions of Theorem 1.1,

\[
U_{m,j} \geq 0, \tag{24}
\]

for all \(m, j \geq 1 \).

Proof For fixed \(j \geq 1 \), we have \(U_{i,j} = 1/a_{i,j} > 0 \). Thus assume the result holds for \(m = j, \ldots, i-1 \), for some \(i \geq j + 1 \). Then, by Assumption (ii), the induction hypothesis, and the definition in (23),

\[
U_{i,j} = \frac{1}{a_{i,i}} \left(1 - \sum_{l=j}^{i-1} \frac{a_{i,l}}{a_{i,i}} U_{l,j} \right) \geq \frac{1}{a_{i,i}} \left(1 - \sum_{l=j}^{i-1} \frac{a_{i-1,l}}{a_{i-1,i-1}} U_{l,j} - \frac{1}{a_{i,i}} U_{i,i} - U_{i-1,i-j} \right) = 0 \tag{25}
\]

and the result follows. \(\blacksquare \)

Note that in the line corresponding to (25) in the proof of Theorem 2.1 in [11] there is a missing negative sign.

Now, note that the lower triangular matrix \(B_n = [b_{i,j}] = A_n^{-1} \) satisfies \(b_{j,j} = 1/a_{j,j} \) and for \(1 \leq j < i \leq n \),

\[
b_{i,j} = \sum_{l=j}^{i-1} - \frac{a_{i,l}}{a_{i,i}} b_{l,j}, \tag{26}
\]

(see e.g. [1]).

The next lemma is essentially a restatement of Equation (2.13) in [11].

Lemma 2.2 For all \(1 \leq j \leq i \leq n \),

\[
b_{i,j} = U_{i,j} - U_{i,j+1}. \tag{27}
\]

Proof For fixed \(j \geq 1 \), we have \(U_{j,j} - U_{j,j+1} = U_{j,j} = 1/a_{j,j} \) and for \(i > j \),

\[
U_{i,j} - U_{i,j+1} = \frac{1}{a_{i,i}} - \sum_{l=j}^{i-1} \frac{a_{i,l}}{a_{i,i}} U_{l,j} - \left(\frac{1}{a_{i,i}} - \sum_{l=j+1}^{i-1} \frac{a_{i,l}}{a_{i,i}} U_{l,j+1} \right) = \sum_{l=j}^{i-1} - \frac{a_{i,l}}{a_{i,i}} (U_{l,j} - U_{l,j+1}). \tag{28}
\]
The last equality in (28) follows since $U_{j,j+1} = 0$ (contrast with the definition $u_{j+1,j} = 1$ in [11]).

The result follows upon comparing (26) and (28). ■

3. Proof of the main theorem

We are now in a position to prove Theorem 1.4 (contrast the proof below with that of Theorem 2.3 in [11]; see the remark following the proof).

Proof of Theorem 1.4 First note that by employing the definition in (23), (i), (ii) and Lemma 2.1, we have

$$U_{j,j} \leq \frac{a_{j+1,j+1}}{a} \left(\frac{a_{j+1,j}}{a_{j+1,j+1}} U_{j,j} \right) = \frac{a_{j+1,j+1}}{a} \left(\frac{1}{a_{j+1,j+1}} - U_{j+1,j} \right) \leq \frac{1}{a}. \quad (29)$$

Similarly

$$U_{j,j} + U_{j+1,j} \leq \frac{a_{j+2,j+2}}{a} \left(\frac{a_{j+2,j}}{a_{j+2,j+2}} U_{j,j} + \frac{a_{j+2,j+1}}{a_{j+2,j+2}} U_{j+1,j} \right)$$

$$= \frac{a_{j+2,j+2}}{a} \left(\frac{1}{a_{j+2,j+2}} - U_{j+2,j} \right) \leq \frac{1}{a}, \quad (30)$$

and in general for $m \geq j$,

$$\sum_{i=j}^{m} U_{i,j} \leq \frac{a_{m+1,m+1}}{a} \left(\sum_{i=j}^{m} \frac{a_{m+1,i}}{a_{m+1,m+1}} U_{i,j} \right)$$

$$= \frac{a_{m+1,m+1}}{a} \left(\frac{1}{a_{m+1,m+1}} - U_{m+1,j} \right) \leq \frac{1}{a}. \quad (31)$$

Employing Lemma 2.2, we have

$$\|B_n\| = \max_{j=1,\ldots,n} \sum_{i=j}^{n} |b_{i,j}| = \max_{j=1,\ldots,n} \sum_{i=j}^{n} |U_{i,j} - U_{i,j+1}|$$

$$\leq \max_{j=1,\ldots,n} \left(\sum_{i=j}^{n} U_{i,j} + \sum_{i=j}^{n} U_{i,j+1} \right). \quad (32)$$

Now, noting that $U_{j,j+1} = 0$, (31) gives

$$\sum_{i=j}^{n} U_{i,j} \leq \frac{1}{a} \quad \text{and} \quad \sum_{i=j}^{n} U_{i,j+1} \leq \frac{1}{a}. \quad (33)$$

The bound in (14) then follows upon applying (33) in (32).

Considering the apparent looseness in the inequality in (32), it is perhaps surprising that for large n, (14) is in fact optimal. In order to prove (16) we need to show that, in the limit, the bound in (14) is attained. To that end, suppose $a_{i,j} = a > 0$ for $i-j \in \{0, 1\}$ and $a_{i,j} = a$ otherwise. It is easy to verify in this case, that for $1 \leq j \leq i \leq n$,

$$b_{i,j} = (-1)^{i-j} \frac{1}{a^*} \left(1 - \frac{a}{a^*} \right)^{\left\lfloor \frac{i-j}{2} \right\rfloor}, \quad (34)$$
and hence,

\[
\|A_n^{-1}\|_1 = \sum_{i=1}^{n} |b_{i,1}|
\]

\[
= \sum_{i=1}^{n} \frac{1}{a^*} (1 - \frac{a}{a^*})^{\frac{|i|}{2}} = \sum_{i=0}^{n-1} \frac{1}{a^*} \left(1 - \frac{a}{a^*}\right)^{\frac{i+1}{2}}
\]

\[
= \frac{1}{a^*} \left(\sum_{i=0}^{\frac{n-1}{2}} \left(1 - \frac{a}{a^*}\right)^i + \sum_{i=0}^{\frac{n-1}{2}} \left(1 - \frac{a}{a^*}\right)^i\right)
\]

\[
= \frac{2}{a} \left(1 - \frac{\rho(a, a^*)^{\frac{n}{2}} + \rho(a, a^*)^{\frac{n}{2}}}{2}\right).
\]

(35)

The result follows upon letting \(n \) tend to infinity in (35).

\[\blacksquare\]

\textbf{Remark} Note that the essential subtle difference between the proof of (14) above and (3) in [11] lies in the definition \(U_{j+1,j}^- := 0 \). In contrast, in [11], following the conventional definition of the fundamental matrix, \(u_{j,j+1} := 1 \). The approach here allows for the second equality in (32) to hold (via Lemma 2.2), whereas in the proof of Theorem 2.3 in [11], there is a need to separate off the term corresponding to \(b_{j,j} = 1/a_{j,j} \).

\textbf{References}

